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SUMMARY

In the sense of method of lines, numerical solution of the unsteady compressible Euler equations in
1D, 2D and 3D is split into three steps: First, space discretization is performed by the �rst-order
�nite volume method using several approximate Riemann solvers. Second, smoothness and Lipschitz
continuity of RHS of the arising system of ordinary dimensional equations (ODEs) is analysed and
its solvability is discussed. Finally, the system of ODEs is integrated in time by means of implicit
and explicit higher-order adaptive schemes o�ered by ODE packages ODEPACK and DDASPK, by a
backward Euler scheme based on the linearization of the RHS and by higher-order explicit Runge–Kutta
methods. Time integrators are compared from several points of view, their applicability to various types
of problems is discussed, and 1D, 2D and 3D numerical examples are presented. Copyright ? 2003
John Wiley & Sons, Ltd.

KEY WORDS: compressible Euler equations; �nite volume schemes; method of lines; semi-discrete
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1. INTRODUCTION

Let the domain �⊂Rd occupied by the �uid be bounded and have a piecewise smooth
boundary @�. The d-dimensional compressible Euler equations consist of the continuity equa-
tion, d Euler momentum equations and energy equation. We will consider them in the
space–time cylinder QT =�× (0; T ) (T¿0) and write them in the form

@w
@t
+

d∑
s=1

@fs(w)
@xs

=0 (1)
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where

w=




�

�v1
...

�vd

e



; fs(w)=




�vs

�vsv1 + �s1p

...

�vsvd + �sdp

(e+ p)vs



; s=1; : : : ; d (2)

and

e=
p

� − 1 +
1
2
�|C|2 (3)

We use the standard notation: t—time, x1; : : : ; xd—Cartesian co-ordinates in Rd; x=
(x1; : : : ; xd); �—density, C=(v1; : : : ; vd)—velocity vector with components v1; : : : ; vd in the
directions x1; : : : ; xd; p—pressure, e—total energy, �sj—Kronecker delta, �¿1—Poisson adi-
abatic constant. Due to physical reasons it is also suitable to require �¿0; p¿0. The functions
fs; s=1; : : : ; d are called inviscid (Euler) �uxes and are de�ned in the set

Q=
{
(w1; : : : ; wd+2)∈Rd+2; w1¿0; wd+2 −

w22 + · · ·+ w2d+1
2w1

¿0
}

(4)

System (1) and (3) is equipped with the initial conditions

w(x; 0)=w0(x); x∈� (5)

and a set of boundary conditions which will be speci�ed later.

2. SEMI-DISCRETE PROBLEM

Integrating Equation (1) over a �nite volume �i ; 16i6N , where N denotes the number of
�nite volumes, and using Green’s theorem and the rotational invariance of the Euler equations
(for a detailed description, see e.g. Reference [1]), we obtain

∫
�i

@w
@t
(x; t) dx=− ∑

j∈Sint (i)

∫
@�ij
T−1
d (�ij)f1(Td(�ij)w(x; t)) dS

− ∑
�∈Swall(i)

∫
@�i�

T−1
d (�i�)f1(Td(�i�)w(x; t)) dS

− ∑
i�∈Sio(i)

∫
@�i�

T−1
d (�i�)f1(Td(�i�)w(x; t)) dS (6)

for all t ∈ (0; T ) and 16i6N . The index set Sint(i) contains indices of �nite volumes adjacent
to the �nite volume �i for all 16i6N . The index sets Swall(i) and Sio(i) contain indices of
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faces @�i� of the �nite volume �i lying in the parts of the boundary @� representing solid wall
and inlet=outlet, respectively. Symbols �ij; �i� ∈Rd denote unit normal vectors to @�ij ; @�i�,
respectively, pointing outward of �i. The rotational matrices Td(�); �∈Rd; |�|=1; d=1; 2; 3,
are de�ned as follows:
In 1D, the normal vector � has the form �= cos � with either �=0 or �. The rotational

matrix T1(�) has the form

T1(�)=



1 0 0

0 cos � 0

0 0 1


 (7)

In 2D, expressing � in spherical co-ordinates as �=[cos(�); sin(�)]T; �∈ 〈−�; �〉, we de�ne

T2(�)=




1 0 0 0

0 cos(�) sin(�) 0

0 − sin(�) cos(�) 0

0 0 0 1


 (8)

In 3D, expressing � in spherical co-ordinates as

�=[cos(�) cos(�); sin(�) cos(�); sin(�)]T; �∈ 〈−�; �〉; �∈
〈
−�
2
;
�
2

〉
(9)

the matrix T3(�) has the form

T3(�)=




1 0 0 0 0

0 cos(�) cos(�) sin(�) cos(�) sin(�) 0

0 − sin(�) cos(�) 0 0

0 − cos(�) sin(�) − sin(�) sin(�) cos(�) 0

0 0 0 0 1




(10)

Replacing in (6) the function w(x; t) with a function wh(x; t) which is piecewise constant in
space on the �nite volumes �1;�2; : : : ;�N and approximating the right-hand side integrals by
the numerical �uxes Hint ; Hwall and Hio, we obtain

@wh
@t
(x; t)|�i =− 1

|�i|
∑

j∈Sint (i)
Hint(wh(x; t)|�i ;wh(x; t)|�j ; �ij(x); |@�ij|)

− 1
|�i|

∑
�∈Swall(i)

Hwall(wh(x; t)|�i ; �i�(x); |@�i�|)

− 1
|�i|

∑
�∈Sio(i)

Hio(wh(x; t)|�i ;wBh (x; t)|@�i� ; �i�(x); |@�i�|) (11)
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t ∈ (0; T ); 16i6N , where �i� denotes the unit normal vector to @�i� pointing outward of �.
Symbols |�i| and |@�i�| denote the d-dimensional measure of |�i| and (d − 1)-dimensional
measure of @�i�, respectively. The function wBh represents a boundary state corresponding to
the inlet=outlet boundary face @�i� which will be discussed later.

2.1. Numerical �ux

The numerical �ux Hint through interior faces @�ij has the well-known form

Hint(wi ;wj; �ij; |@�ij|)= |@�ij|T−1
d (�ij)fR(Td(�ij)wi ;Td(�ij)wj) (12)

where fR is the approximate Riemann solver. The numerical �ux Hwall through the solid-wall
faces @�i� has the form

Hwall(wi ; �i�; |@�i�|)= |@�i�|[0; p(wi); 0; : : : ; 0]T (13)

where

p(wi)= (� − 1)
(
wi;d+2 −

w2i;2 + · · ·+ w2i; d+1
2wi;1

)
(14)

denotes the pressure corresponding to the state wi. In this approximation, the impermeability
condition C · �i�=0 for solid walls was used, see e.g. Reference [2] for details. Finally, the
numerical �ux Hio through the inlet=outlet faces @�i� has the form

Hio(wi ;wi�; �i�; |@�i�|)= |@�i�|T−1
d (�i�)f1(w

B(Td(�i�)wi ;Td(�i�)wi�)) (15)

where wi� represents the boundary state corresponding to the face @�i�. The function wB

represents a switch deciding how much information is di�used from the boundary into the
domain, depending on the number of outgoing characteristics of the approximate solution wh.
Switches of this type are typical for hyperbolic systems. We use a function

wB(wL;wR)=




wL if wL;2 −
√
�
pL
%L
¿0 (supersonic outlet)

[wL;1; : : : ; wL;d+1; wR;d+2]T

if wL;2 −
√
�
pL
%L
¡0 and wL; 2¿0 (subsonic outlet)

[wR;1; : : : ; wL;d+1; wL;d+2]T

if wL;2 +
√
�
pL
%L
¿0 and wL;2¡0 (subsonic inlet)

wR if wL;2 +
√
�
pL
%L
¡0 (supersonic inlet)

(16)

extrapolating the energy density e at the subsonic inlet and extrapolating the density % and
all components of the momentum %C at the subsonic outlet. At the supersonic outlet, all
components of the approximate solution are extrapolated. No information is extrapolated at
the supersonic inlet.
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2.2. System of non-linear ordinary di�erential equations

Put

y0 =




y01

y02
...

y0N



=




wh(x; 0)|�1
wh(x; 0)|�2

...

wh(x; 0)|�N



∈QN (17)

and

Fint(y)=




− 1
|�1|

∑
j∈Sint (1)Hint(y1; yj; �1j; |@�1j|)

− 1
|�2|

∑
j∈Sint (2)Hint(y2; yj; �2j; |@�2j|)

...

− 1
|�N |

∑
j∈Sint (N )Hint(yN ; yj; �Nj; |@�Nj|)




(18)

Fwall(y)=




− 1
|�1|

∑
�∈Swall(1)Hwall(y1; �1�; |@�1�|)

− 1
|�2|

∑
�∈Swall(2)Hwall(y2; �2�; |@�2�|)

...

− 1
|�N |

∑
�∈Swall(N )Hwall(yN ; �N�; |@�N�|)




(19)

Fio(y; t)=




− 1
|�1|

∑
�∈Sio(1)Hio(y1;w1�; �1�; |@�1�|)

− 1
|�2|

∑
�∈Sio(2)Hio(y2;w2�; �2�; |@�2�|)

...

− 1
|�N |

∑
�∈Sio(N )Hio(yN ;wN�; �N�; |@�N�|)




(20)

where wi�(t)=wBh (x; t)|@�i� represents boundary conditions at the faces @�i�; �∈ Sio; 16i6N .
Our aim is to �nd coe�cients y∈C1(0; T ;QN ) to the approximate solution

wh(x; t)=
N∑
i=1
yi(t)�i(x) (21)
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satisfying

ẏ(t) = F(y(t); t) for all t ∈ (0; T ) (22)

y(0) = y0 (23)

The symbol �i(x); 16i6N denotes �i-characteristic functions. Note that the right-hand side
vector function

F(y(t); t)=Fint(y(t)) + Fwall(y(t)) + Fio(y(t); t) (24)

has the form corresponding to (11).

3. SOLVABILITY OF THE SEMI-DISCRETE PROBLEM

The existence and uniqueness of solution to the semi-discrete problem is a consequence of the
basic existence and uniqueness theorem in the theory of ODEs (see e.g. References [3–5]).

3.1. Interior component Fint(y)

In this contribution, we will analyse the well-known approximate Riemann solvers fR(qL; qR)
of Steger–Warming (see References [2, 6]), Vijayasundaram (see References [2, 7]), Van Leer
(see Reference [2]) and Osher–Solomon (see References [2, 8, 9]). Modern, modi�ed schemes
such as e.g. HLLE (see References [10, 11]), AUSM (see Reference [12]) or recently appeared
AUSMD, AUSMV, AUSMDV (see Reference [13]) inherit the essential properties implying
the unique solvability of the semi-discrete problem and can be analysed in the same way.
Approximate Riemann solvers of Steger–Warming, Vijayasundaram and Van Leer are con-

tinuous in Q2. Their Jacobi matrices
DfR(qL; qR)

DqL
;

DfR(qL; qR)
DqR

(25)

are continuous in Q0≡Q2 \ (Qv1−c=0 ∪Qv1=0 ∪Qv1+c=0)
2 where

Qv1−c=0 =



q∈Q; q2 −

√√√√√√�(� − 1)
(
qd+2 −

∑d−1
i=2 q

2
i

2q1

)

q1
= 0




(26)

Qv1=0 = {q∈Q; q2 = 0} (27)

Qv1+c=0 =



q∈Q; q2 +

√√√√√√�(� − 1)
(
qd+2 −

∑d−1
i=2 q

2
i

2q1

)

q1
= 0




(28)
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Plate 1. Steady-state Mach number distribution.

Plate 2. Steady density distribution, cut y=0.
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Plate 3. Steady density distribution, cut z=0:11.
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and are bounded in each compact subset of Q0. Obviously, the approximate Riemann solver by
Osher–Solomon and its Jacobi matrices (25) are continuous in Q2. Thus, the vector function
Fint(y), de�ned by (18), is Lipschitz continuous in !≡QN for all approximate Riemann
solvers mentioned (and generally for many others).

3.2. Solid-wall component Fwall(y)

As function (14) is smooth in Q, the vector function Fwall(y) de�ned by (19) is smooth in
!≡QN .

3.3. Inlet=outlet component Fio(y; t)

On the contrary, switch (16) is obviously not continuous, and means a potential discontinuity
of the right-hand side F . This fact is demonstrated here analytically in the case of relatively
simple inlet=outlet boundary conditions, but is valid generally.

3.4. Conclusion

A switch like (16), translating the behaviour of characteristic curves of compressible Euler
equations into the inlet=outlet boundary conditions, is a common property of all hyperbolic
problems. In the case of our model inlet=outlet boundary conditions, we can analytically con-
�rm the known fact that treatment of inlet=outlet boundary conditions in�uences the solvabil-
ity of the semi-discrete problem in a crucial way. Speci�cally in our case, discontinuity may
easily be introduced into the right-hand side if no additional care is taken about the situation,
when the �ow across an inlet=outlet edge changes its type from subsonic to supersonic and=or
inlet to outlet (and vice versa).
When we want to respect the characteristic behaviour of the solved equations, we must

allow for a switch of type (16) in the numerical scheme. Therefore, to make sure that the
right-hand side remains continuous also across branches of that switch, we must monitor
the �ow through inlet and outlet boundary faces. Boundary states wi� have to be adjusted
according to the outgoing characteristics of the approximate solution in such a way that values
returned by switch (16) do not change discontinuously when the �ow changes its type.

4. NUMERICAL EXAMPLES

In the following few examples we illustrate our long-term experience with various ODE
solvers. Their performance generally strongly depends on various aspects of the solved prob-
lem (not only sti�ness, but also the position of the initial state in the set of admissible states
and others). Therefore, it is not easy to de�ne what “usual behaviour” of the methods means,
and it is de�nitively not possible to make conclusions using only a few presented examples.
Let us emphasize that it is our aim only to point out various aspects related to problem-
speci�c choice of suitable ODE schemes, and that we do not intend to advocate some of
them. Some conclusions can indeed be made, regarding, e.g. presence or lack of local error
control, memory requirements, etc.
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Figure 1. Unstructured triangular grid in the GAMM channel.

4.1. Transonic �ow in the 2D GAMM channel

The GAMM channel is a standard test example for transonic �ow simulations (name rooted
in German “Gesselschaft f	ur Angewandte Mathematik und Mechanik). The channel is 2 m
long, 1m high, with a 10% circular bump in the middle of its bottom. The �uid (in our case
the air) �ows from the left to the right. The upper and lower sides represent solid walls. Its
geometry and an unstructured grid shown in Figure 1 consists of N =11048 triangles.
Initial data are chosen constant with %0 = 1:5 kg=m3; C0 = [205:709227; 0]T m=s and p0 =

101 000 Pa. We prescribe the density %=1:5 kg=m3 and velocity C=[205:709227; 0]T m=s at
the subsonic inlet and p0 = 101 000 Pa at the subsonic outlet. For the construction of the
numerical �ux, we use the approximate Riemann solver by Osher–Solomon (for its 2D form
see Reference [9]).
We will integrate in time using the following ODE schemes:

• Standard explicit Runge–Kutta schemes of order one, two and four, equipped with the
largest possible time step that still keeps them stable.

• Backward Euler scheme with linearized RHS of the system of ODEs, again with a
constant (largest stable) time step. The arising sparse system of linear equations is pre-
conditioned with ILU and solved iteratively by suitable biconjugate gradient methods.

• Implicit sti� and non-sti� higher-order adaptive schemes o�ered by the ODE packages
ODEPACK and DDASPK. The sti� ones are in both cases based on backward di�erence
formula (BDF), and the non-sti� ones on Adams scheme and implicit Runge–Kutta
methods, respectively. We paid special attention to apply the solvers under equivalent
conditions, unless stated otherwise. Most important among these conditions are:
◦ identical full block structure of the sparse Jacobi matrix of the right-hand side (each
�nite volume corresponds to a block in the matrix of the size (d + 2)× (d + 2),
where d is spatial dimension, and there are M + 1 blocks per block-row, where M
is the number of neighbours of a �nite volume),

◦ identical ILU preconditioning of sparse Jacobi matrix of the right-hand side,
◦ identical relative and absolute bounds for local error (we have chosen level of 10−5).
For detail description of these ODE schemes and miscellaneous input parameters we refer
to References [14–18]. Detail information on these solvers, including also description of
input parameters, can be found also directly in comments within the public domain source
codes.
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Figure 2. Mach number on the solid walls.
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Figure 3. CPU time convergence history for the explicit 1st-order Runge–Kutta (Euler) scheme.

All solvers converge to the same steady-state solution shown in Plate 1 (colour map of the
Mach number) and Figure 2 (Mach number on solid walls). This steady solution is in good
agreement with results of other authors. In Figure 2, one can even see the Zierep singularity
(the Mach number is brie�y increasing just after the shock) which is a means for the rating
of the quality of numerical schemes on this standard test channel.
In Figures 3–9 we compare convergence histories with the CPU time (CPU hours) on the

x-axis and the decimal logarithm of the norm
∣∣∣∣
∣∣∣∣ N∑
i=1
ẏi(t)�i

∣∣∣∣
∣∣∣∣
L∞(�)

(29)

on the y-axis. The approximate solution is considered steady if norm (29) of its time derivative
achieves a su�ciently small prescribed tolerance. These histories will be discussed together
with the 3D ones in the last section of the paper.
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-14
-12
-10

-8
-6
-4
-2
0

0 1 2 3 4 5 6 7 8 9 10

Figure 4. CPU time convergence history for the explicit 2nd-order Runge–Kutta
scheme. Notice that although we used the largest possible CFL constant to keep
the computation stable, the size of the time step did not achieve two times the
size corresponding to explicit Euler method. The reasons are fast initial devel-
opments in the solution, when all schemes tend to leave the set of admissi-
ble states, computing negative densities and=or pressures. This implies additional

restrictions on the size of the time step.

-14
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-8
-6
-4
-2
0

0 2 4 6 8 10 12 14

Figure 5. CPU time convergence history for the explicit 4th-order Runge–Kutta scheme.
Notice a similar e�ect as with the 2nd-order scheme. Let us emphasize that this

behaviour depends on the speci�c problem.
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-1
0

0 2 4 6 8 10 12 14 16 18 20

Figure 6. CPU time convergence history for the semi-implicit backward Euler scheme. Time steps
are approximately 10 times larger in comparison with explicit Euler scheme; however, assembling and

solution of the arising linear system in�uence the performance signi�cantly.

In Figures 10–16 we show how frequently the RHS of the ODE system is used by the
schemes. We again plot convergence histories but now with thousands of calls to the RHS
on the x-axis. The meaning of the y-axis stays unchanged, i.e. the decimal logarithm of norm
(29).

Copyright ? 2003 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2003; 41:519–535



METHOD OF LINES FOR EULER EQUATIONS 529
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Figure 7. CPU time convergence history for the implicit adaptive BDF o�ered by
DDASPK, with diagonal preconditioning of the Jacobi matrix of the right-hand side (this
was the only preconditioning that we succeeded to implement, investing the same e�ort

that we needed to interface with ODEPACK).
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Figure 8. CPU time convergence history for the implicit adaptive Adams scheme o�ered by ODEPACK.
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Figure 9. CPU time convergence history for the implicit adaptive BDF o�ered by ODEPACK.
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Figure 10. RHS calls convergence history for the explicit 1st-order Runge–Kutta (Euler) scheme.
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Figure 11. RHS calls convergence history for the explicit 2nd-order Runge–Kutta scheme.
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Figure 12. RHS calls convergence history for the explicit 4th-order Runge–Kutta scheme.
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Figure 13. RHS calls convergence history for the semi-implicit backward Euler scheme.

-8
-7
-6
-5
-4
-3
-2
-1
0

0 50 100 150 200 250

Figure 14. RHS calls convergence history for the implicit adaptive BDF o�ered by DDASPK.
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Figure 15. RHS calls convergence history for the implicit
adaptive Adams scheme o�ered by ODEPACK.
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Figure 16. RHS calls convergence history for the implicit adaptive BDF o�ered by ODEPACK.

4.2. Transonic �ow in a 3D channel with a saddle

In this subsection, we will deal with the numerical solution of transonic �ow in a 3D channel
containing a parabolic saddle (extension of the GAMM channel to 3D). The channel is 2 m
long, 1:5 m wide and 1 m high. The midpoint of its bottom is placed at the origin of the
system of co-ordinates and its edges are parallel to the corresponding axes. The saddle itself
is described by the function

s(x1; x2)=−x2 + 0:8
3
y2 + 0:1 (30)

The bottom of the channel is shown in Figure 17. Quadrilateral boundary faces corresponding
to xL=−1 and xR=1 represent inlet and outlet, remaining boundary faces, containing trace
of the parabolic bump, represent solid walls.
Initial data is chosen constant with values %0 = 1:5 kg=m3; C0 = [190:0; 0; 0]T m=s and p0 =

101 000 Pa. The air �ows through the channel from the left to the right with the boundary
conditions %0 = 1:5 kg=m3; C0 = [190:0; 0; 0]T m=s at the inlet and p0 = 101 000 Pa at the outlet.
The domain is covered with a structured tetrahedral grid consisting of N =144 000 �nite

volumes. For the construction of the numerical �ux, the approximate Riemann solver by
Osher–Solomon [2] is used.
Integration in time is performed using the previously described ODE schemes.
The steady-state solution to the problem is presented in Plates 2 and 3.Convergence histories

showing the speed of convergence to the steady-state (again with the CPU hours on the x-axis
and the decimal logarithm of norm (29) on the y-axis) are presented in Figures 18–22.
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Figure 17. 3D curved channel.
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Figure 18. CPU time convergence history for the explicit 1st-order Runge–Kutta (Euler) scheme.
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Figure 19. CPU time convergence history for the explicit 2nd-order Runge–Kutta scheme.

4.3. Conclusions and numerical experience

The Method of lines separates the time integration from the space discretization, which cer-
tainly brings more modularity into the numerical simulation of the �ow evolution problem.
We analysed existence and uniqueness of solution to the semi-discrete problem (a system
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Figure 20. CPU time convergence history for the explicit 4th-order Runge–Kutta scheme.
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Figure 21. CPU time convergence history for the implicit adaptive BDF o�ered by DDASPK, with
diagonal preconditioning of the Jacobi matrix of the right-hand side.
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Figure 22. CPU time convergence history for the implicit adaptive Adams scheme o�ered by ODEPACK.

of ordinary di�erential equations), and formulated necessary conditions for the treatment of
inlet=outlet boundary conditions, based on the behaviour of characteristic curves, preventing
the right-hand side from becoming discontinuous. We also have shown that it makes sense
to apply various ODE solvers to the numerical integration. An “optimal” choice however
strongly depends on the character of the solved problem together with the type of results that
we are interested in, and it is not possible to make universal statements on applicability of
various schemes.
What we can say is that application of ODE packages ODEPACK and DDASPK can be

a fast way to improve the stability and accuracy of the time integration mainly for smaller
problems. For problems with a large number of degrees of freedom, application of implicit
adaptive schemes can be limited either by their high memory requirements (as, e.g. BDF in
ODEPACK, which needs to store Jacobi matrix of the right-hand side) or by large amount of
CPU time caused by an excessive number of evaluations of the right-hand side (DDASPK—
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see Figures 7 and 21). Let us however mention that this probably would improve when
DDASPK o�ered easier access to more sophisticated preconditioners. For the sake of com-
parison, we decided to spend the same amount of time with interfacing with both these
packages. ODEPACK could o�er ILU preconditioning easily.
On the other hand, we have not succeeded in applying the implicit adaptive backward

di�erence formula from ODEPACK to the presented 3D problem due to its huge storage
requirements. In our opinion, with computers of today’s standard (here we are not speaking
about supercomputers with terabytes of allocatable memory), these implicit schemes seem not
yet really relevant for large three-dimensional problems.
On the other hand, ODE packages always help to overcome stability problems (which are

not negligible for explicit Runge–Kutta schemes). What is even more important, the ODE
packages always perform certain precision control which helps to eliminate problems with
negative pressures and densities within the computation. These troubles are usual for problems
with badly shaped meshes or steep solution gradients (appearing, e.g. in simulation of nozzles
and elsewhere). In such cases, due to lack of precision of the approximate time integration,
the approximate solution to the semi-discrete problem easily leaves the exact one and runs
out of the set of admissible states.
Concerning the precision, also for large problems there is the possibility to take advantage

of a precise implicit higher-order adaptive scheme of the Adams type, which is o�ered by
ODEPACK. This scheme is quite e�cient also for large problems (see Figures 8, 22). Even
if one does not have troubles with negative pressures and densities, controlled precision is
particularly useful for non-stationary problems when one is interested in precise solution at all
time levels. For steady-state computations of large problems, particularly with good quality
meshes and reasonable gradients, explicit Runge–Kutta schemes are expected to be e�cient.
Obviously, some precision problems can be solved by increasing the order of the scheme or
by decreasing the time step.
For steady-state computations, accurate ODE solvers sometimes can unnecessarily lose CPU

time by their e�ort to achieve the prescribed tolerance for the approximate solution at all time
levels. Practical computations show that an attempt to decrease the accuracy usually does not
lead to dramatical improvements in computational times.
The time integration based on the backward Euler method (see Figures 6, 13) with lin-

earized right-hand side is more stable and more precise than the explicit Runge–Kutta schemes.
Moreover, it requires an essentially lower number of calls to the right-hand side than the other
schemes (except for the implicit adaptive BDF from ODEPACK applicable only to smaller
problems). Its e�ciency depends on the quality of the iterative solution of the arising sys-
tem of linear equations. We have used basic biconjugate gradient methods with the standard
incomplete LU preconditioning. Due to the results published in Reference [19], we expect
that the application of suitable multigrid techniques to the system of linear equations would
improve the e�ciency dramatically. In our opinion, in combination with suitable multigrid
techniques, this scheme is very promising also for very large problems.
Last agreeable aspect of the mentioned ODE packages is that they are able to perform

implicit adaptive time integration with the user only providing a subroutine for explicit eval-
uation of the right-hand side. In fact, here one invests the same amount of work as when
using simpler, self-implemented explicit schemes. With the ODE packages, the work reduces
to the implementation of a subroutine which processes the vector of coe�cients of the ap-
proximate solution to the vector of derivatives. The user need not even call this subroutine—
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the complete time integration is carried out by the ODE solver itself. The subroutines can be
written as well in Fortran as in other programming languages (we have experience with C
and C++). In the latter case, Fortran packages are to be linked to the resulting executable.
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